Data Science/Python
[python] ML Model Parameter Optimization : GridSearchCV
DS-9VM
2022. 9. 17. 06:24
728x90
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
knn_pipe = Pipeline([('mms', MinMaxScaler()),
('knn', KNeighborsClassifier())])
params = [{'knn__n_neighbors': [3, 5, 7, 9],
'knn__weights': ['uniform', 'distance'],
'knn__leaf_size': [15, 20]}]
gs_knn = GridSearchCV(knn_pipe,
param_grid=params,
scoring='accuracy',
cv=5)
gs_knn.fit(X_train, y_train)
gs_knn.best_params_
#Output:
#{'knn__leaf_size': 15, 'knn__n_neighbors': 5, 'knn__weights': 'distance'}
# find best model score
gs_knn.score(X_train, y_train)
#Output: 0.84035137728x90