728x90
Dataframe concatenate
더보기
pd.concat(
objs,
axis=0,
join="outer",
ignore_index=False,
keys=None,
levels=None,
names=None,
verify_integrity=False,
copy=True,
)
- objs : a sequence or mapping of Series or DataFrame objects. If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.
- axis : {0, 1, …}, default 0. The axis to concatenate along.
- join : {‘inner’, ‘outer’}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner for intersection.
- ignore_index : boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, …, n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.
- keys : sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples.
- levels : list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.
- names : list, default None. Names for the levels in the resulting hierarchical index.
- verify_integrity : boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation.
- copy : boolean, default True. If False, do not copy data unnecessarily.
import pandas as pd
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
},
index=[0, 1, 2, 3],
)
df2 = pd.DataFrame(
{
"A": ["A4", "A5", "A6", "A7"],
"B": ["B4", "B5", "B6", "B7"],
"C": ["C4", "C5", "C6", "C7"],
"D": ["D4", "D5", "D6", "D7"],
},
index=[4, 5, 6, 7],
)
df3 = pd.DataFrame(
{
"A": ["A8", "A9", "A10", "A11"],
"B": ["B8", "B9", "B10", "B11"],
"C": ["C8", "C9", "C10", "C11"],
"D": ["D8", "D9", "D10", "D11"],
},
index=[8, 9, 10, 11],
)
frames = [df1, df2, df3]
result = pd.concat(frames)
result
Dataframe and Series Concatenate
import pandas as pd
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
},
index=[0, 1, 2, 3],
)
s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
result = pd.concat([df1, s1], axis=1)
Appending row to a Dataframe
T : row to column
import pandas as pd
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
},
index=[0, 1, 2, 3],
)
s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
result = pd.concat([df1, s2.to_frame().T], ignore_index=True)
728x90
'Data Science > Python' 카테고리의 다른 글
[pandas]Dataframe Pivoting code. (0) | 2022.04.22 |
---|---|
[Pandas] Database-style DataFrame joining/merging (0) | 2022.04.16 |
[Python] NumPy Tutorial #2 : shape & reshape (0) | 2022.04.12 |
[Python] NumPy Tutorial #1 : Introduce & Vectorization & Boadcasting (0) | 2022.04.12 |
[pandas] Create pandas dataframe from nested dict. (0) | 2022.04.06 |
최근댓글